Package: polySimIBD (via r-universe)

July 2, 2024

Type Package

Title Structured Wright Fisher Simulator for Malaria Genetics

Version 1.1.0

Description Unique features of the malaria life-cycle and transmission dynamics requires extensions of typical population genetic simulators. Using a spatial discrete-loci, discrete-time structured Wright Fisher framework, we simulate malaria population genetics forwards in time. Users are then able to capture the full Ancestral Recombination Graph.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

URL https://github.com/nickbrazeau/polySimIBD

BugReports https://github.com/nickbrazeau/polySimIBD/issues

Imports ggplot2, magrittr, purrr, Rcpp, methods, RColorBrewer, grDevices, goodegg

Suggests tibble, tidygraph, dplyr, knitr, rmarkdown, covr, testthat

Remotes nickbrazeau/goodegg,

VignetteBuilder knitr

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

LinkingTo Rcpp

SystemRequirements C++11

Repository https://plasmogenepi.r-universe.dev

RemoteUrl https://github.com/nickbrazeau/polySimIBD

RemoteRef HEAD

RemoteSha 27372fe90f93a283fc7c39c06a9e82c0486382c2

bvtree

Contents

argraph	2
bvtree	2
bvtreeToNewick	3
get_arg	3
get_bvibd	4
get_effective_coi	4
get_within_ibd	5
polySimIBD	6
sim_swf	6
subset_bvtree	7
swfsim	8
	9

Index

argraph	The Ancestral Recombination Graph This S3 class represents the ARG
	from the realized simulation

Description

A list of bv_tree for each discrete-loci, which constitutes the ARG

bvtree	A Simplified Tree: bytree This S3 class represents the bytree which is
	a simple marginal tree representation

Description

The bv_tree class is a lightweight representation of a marginal tree

Fields

- c vector; the node connection for each haplotype (each haplotype is an element in a vector)
- t vector; the timing of the node connection (time to MRCA)
- z vector; the order of coalescence for each set of haplotypes

bvtreeToNewick

Description

Recursively converts bvtree to Newick tree format for compatibility with other downstream packages. The output format named leafs with distances that correspond to coalescent times. Additionally, clades have the total tree length explicitly (versus the acceptable Newick shorthand without total length).

Usage

bvtreeToNewick(bvtree, tlim = 10)

Arguments

bvtree	S3 class; internal class for the polySimIBD: package bvtree
tlim	numeric; the maximum number of generations to consider before exiting grace- fully if all samples have not coalesced

Details

Note, the overall time to the most recent common ancestor (TMRCA) is set to the tlim, which in Newick format looks inappropriately rooted.

Note, the function does not "know" the original tlim that was specified in the forward-simulation, and thus must be re-stated by the user.

Value

Newick String

get_arg

Get ancestral recombination graph from forward simulations

Description

Given an object swf, which is the result of forward simulation using the function sim_swf(), walk backwards through the ancestry and calculate the coalescent tree at every locus for the specified hosts and/or haplotypes.

Usage

```
get_arg(swf, host_index = NULL, haplo_index = NULL)
```

Arguments

swf	result of forwards simulation using the function sim_swf()
host_index	a vector of target hosts. Defaults to all hosts
haplo_index	a list of target haplotypes within the hosts specified by host_index. Defaults to all haplotypes within the specified hosts.

get_bvibd

Get Between-Host Identity by Descent from forward simulations

Description

Given an object swf, which is the result of forward simulation using the function sim_swf(), walks backwards through the ancestry and calculate the between host identity by descent. The IBD calculation is based on *Verity et. al 2020, Nat Comms, PMC7192906* and assumes relatedness if there are any IBD among the haplotypes between hosts at a given loci (i.e. a loci is considered to be in IBD if there is any between host IBD among the strains, regardless of COI. This means that as COI increases, IBD may be overestimated, which has been shown to be a conservative estimand).

Usage

get_bvibd(swf, host_index = NULL, haplo_index = NULL)

Arguments

swf	result of forwards simulation using the function sim_swf()
host_index	a vector of target hosts. Defaults to all hosts
haplo_index	a list of target haplotypes within the hosts specified by host_index. Defaults to all haplotypes within the specified hosts.

get_effective_coi Extract Effective COI by Loci from SWF Simulation for a Single Host

Description

From a single host in a SWF Simulation, extract the effective COI for loci within the ARG. Effective COI is defined as the number of non-coalesced genomes at the end of tlim. Note, this framework is an independent process for each recombination event and thus will vary along the simulated genome (but not necessarily by locus).

Usage

get_effective_coi(swf, host_index = NULL)

get_within_ibd

Arguments

swf	result of forwards simulation using the function sim_swf()
host_index	a vector of target hosts. Defaults to all hosts

Details

Function limited to a single host per "realization"

Value

vector of effective COI by loci

get_within_ibd Calculate Within-Host IBD

Description

The within-host IBD is calculated as the number of strains that have coalesced within the tlim at each loci divided by the original (i.e. not effective) COI. As an example, consider that there are three strains (i.e. parasites) within a host and that the parasite genome has ten equidistant loci with a single recombination breakpoint at loci 5 (i.e.). Within this framework, we consider at loci 1:5 if 2/3 strains have coalesced, the within-host IBD for this section is 2/3. Next, for loci 6:10 if no strains have coalesced the within-host IBD is 0. Combining these results with-weighting for respective length/portion of the genome (weights here are equal and therefore negligible) the overall within-host IBD is:

$$\frac{2+0}{Host_{COI}-1}$$

, where one is subtracted from the Host-COI for self-comparison, which gives (3-1) + (3-1) (for each loci). Note, because we consider self comparisons, the denominator is always less than the true COI.

Usage

get_within_ibd(swf, host_index = NULL)

Arguments

swf	result of forwards simulation using the function sim_swf()
host_index	a vector of target hosts. Defaults to all hosts

Details

Function limited to a single host per "realization"

Value

double of within-host IBD

polySimIBD

Description

Unique features of the malaria life-cycle and transmission dynamics requires extensions of typical population genetic simulators. Using a spatial discrete-loci, discrete-time structured Wright Fisher model, we simulate malaria population genetics forwards in time. Users are then able to capture the full Ancestral Recombination Graph.

sim_swf

The Structured Wright Fisher Model for IBD

Description

Simulate a population forwards with recombination that approximates the Structured Wright Fisher Process and tracks haplotype identity by descent where individuals represent demes, such that within a deme individual-level COI is considered. The model is also extended to consider spatial demes that individual hosts can move between.

Usage

sim_swf(pos, N, m, rho, mean_coi, tlim, migr_mat = 1, verbose = FALSE)

Arguments

pos	vector; the genomic coordinates for chromosome and position of the sites
Ν	integer vector; The number of individuals to consider in each deme
m	numeric numeric; Probability of internal migration where m represents the prob- ability of moving from host_origin to host_new by m*(1-1/N) of each deme
rho	numeric; expected recombination rate
mean_coi	numeric vector; The lambda of a right-shifted Poisson process, 1 + Pos(lambda) representing the average COI of each deme
tlim	numeric; the maximum number of generations to consider before exiting grace- fully if all samples have not coalesced
migr_mat	numeric matrix; Migrations rates or probabilities between destination and ori- gin. Note, because this is a Wright-Fisher model, we are drawing parents and therefore migration matrix is parameterized towards "where one came from" versus "where one is headed": origin specified as columns and destination in rows. Default value of 1 indicates non-spatial model. Note, if using a probabil- ity matrix, rows must sum to 1 (valid marginal probability); otherwise, values will be assumed to be rates and converted to probabilities.
verbose	boolean

subset_bvtree

Details

Demes are assumed to be ordered throughout (i.e. the order needs to be consistent between N, m, mean_coi, and the rows and columns of the migration matrix).

The migration matrix is assumed to be a distance matrix that is either a rate or a probability. The program will coerce the matrix into a probability distribution between origin and destination based on the row-sums.

This function is intended to be fed into the get_arg function to summarize the simulation results,

Value

Returns a list of length six that contains

- 1. pos: The simulated genetic coordinates
- 2. coi: The COI of each individual
- 3. recomb: A recombination list of length of tlim where each element contains the recombination block as a boolean of the two parental haplotypes.
- 4. parent_host1: the parental host assignments for the "paternal" haplotype
- 5. parent_host1: the parental host assignments for the "maternal" haplotype
- 6. parent_haplo1 "paternal" haplotype assignment (as above)
- 7. parent_haplo2 "maternal" haplotype assignment (as above)

subset_bvtree Subset an object of class bvtree

Description

Given a bytree and a vector of indices s, creates a new tree which is a subset of the original tree focusing only on the elements s.

Usage

```
subset_bvtree(bvtree, s)
```

Arguments

bvtree	an object of class "bytree"
S	a vector specifying which elements in the bytree to focus on

swfsim

swfsim

The Structured Wright Fisher Model Output This S3 class represents realization of the Spatial Discrete-Time Discrete-Loci Structured Wright Fisher Malaria Model.

Description

The realization of the Discrete-Time Discrete-Loci Spatial Wright Fisher Malaria Model contains all of the information to create the ARG: each generation's parents, the resulting recombination events between parents, and the offspring haplotypes

Fields

pos vector; the genomic coordinates for chromosome and position of the sites

coi vector; the COI of each host

recomb list; recombination blocks for each ancestral host for each generation

parent_host1 list; parent for host 1 for each generation

parent_host2 list; parent for host 2 for each generation

parent_haplo1 list; haplotypes for parent 1 for each generation

parent_haplo2 list; haplotypes for parent 2 for each generation

Index

argraph, 2

bvtree, 2
bvtreeToNewick, 3

get_arg, 3, 7
get_bvibd, 4
get_effective_coi, 4
get_within_ibd, 5

polySimIBD, 6

sim_swf,6
subset_bvtree,7
swfsim,8