In this analysis file, we aim to understand the effect of varying parameters on our COI framework. We will examine both simulation and estimation parameters. The parameters that we will examine are:
coverage
: Coverage at each locus.loci
: The number of loci.alpha
: Shape parameter of the symmetric Dirichlet prior
on strain proportions.overdispersion
: The extent to which counts are
over-dispersed relative to the binomial distribution. Counts are
Beta-binomially distributed, with the beta distribution having shape
parameters p/overdispersion
and (1 − p)/overdispersion.relatedness
: The probability that a strain in mixed
infections is related to another.epsilon
: The probability of a single read being
miscalled as the other allele. Applies in both directions.coi
: The complexity of infection of the sample.seq_error
: The level of sequencing error that is
assumed.use_bins
: Whether or not to group data before
estimating the COI.bin_size
: The minimum size of each bin of data.Parameter | Default Value |
---|---|
COI | 3 |
PLMAF | runif(1000, 0, 0.5) |
Coverage | 200 |
Alpha | 1 |
Overdispersion | 0 |
Relatedness | 0 |
Epsilon | 0 |
Sequence Error | 0.01 |
Use Bins | FALSE |
Bin Size | 20 |
toverall <- cont_sensitivity(
coi = 1:20,
repetitions = 100,
plmaf = p,
coverage = 200,
seq_error = 0,
coi_method = c("variant", "frequency")
)
toverall_image <- sensitivity_plot(
data = toverall,
dims = c(1, 2),
result_type = "cont",
title = "Predicted COI",
sub_title = c("Variant Method", "Frequency Method")
)
toverall_error <- error_plot(
data = toverall,
fill = "coi_method",
legend_title = "COI Method",
title = "Error",
fill_levels = c("Variant Method", "Frequency Method")
)
toverall_fig <- toverall_image / toverall_error +
plot_annotation(
tag_levels = "A",
theme = theme(plot.tag = element_text(size = 10))
) +
theme(legend.position = "bottom")
toverall_fig
tcoverage_1 <- cont_sensitivity(
coi = 2:20,
coverage = c(50, 100, 250, 500, 1000, 2000),
repetitions = 100,
seq_error = 0.01,
plmaf = p,
coi_method = "variant"
)
tcoverage_image_1 <- sensitivity_plot(
data = tcoverage_1,
result_type = "cont",
title = "Predicted COI",
dims = c(2, 3),
sub_title = paste0("Coverage = ", c(50, 100, 250, 500, 1000, 2000))
)
tcoverage_error_1 <- error_plot(
tcoverage_1,
fill = "coverage",
legend_title = "Coverage",
title = "Error"
)
tcoverage_fig_1 <- tcoverage_image_1 / tcoverage_error_1 +
plot_annotation(
tag_levels = "A",
theme = theme(plot.tag = element_text(size = 10))
) +
plot_layout(heights = c(2, 1)) +
theme(legend.position = "bottom")
tcoverage_fig_1
tcoverage_2 <- cont_sensitivity(
coi = 2:20,
coverage = c(50, 100, 250, 500, 1000, 2000),
repetitions = 100,
seq_error = 0.01,
plmaf = p,
coi_method = "frequency"
)
tcoverage_image_2 <- sensitivity_plot(
data = tcoverage_2,
result_type = "cont",
title = "Predicted COI",
dims = c(2, 3),
sub_title = paste0("Coverage = ", c(50, 100, 250, 500, 1000, 2000))
)
tcoverage_error_2 <- error_plot(
tcoverage_2,
fill = "coverage",
legend_title = "Coverage",
title = "Error"
)
tcoverage_fig_2 <- tcoverage_image_2 / tcoverage_error_2 +
plot_annotation(
tag_levels = "A",
theme = theme(plot.tag = element_text(size = 10))
) +
plot_layout(heights = c(2, 1)) +
theme(legend.position = "bottom")
tcoverage_fig_2
# Set the range over which we will iterate
loci <- c(1e2, 1e3, 1e4)
# For each loci, reset the PLMAF and then run
bloci <- lapply(loci, function(new_L) {
new_p <- rbeta(new_L, 1, 5)
new_p[new_p > 0.5] <- 1 - new_p[new_p > 0.5]
inner_tloci <- cont_sensitivity(
coi = 2:20,
repetitions = 100,
plmaf = new_p,
seq_error = 0.01,
coi_method = "variant"
)
inner_tloci$param_grid$loci <- new_L
return(inner_tloci)
})
# Extract the relevant information for each output: predicted_coi, probability,
# param_grid, and boot_error
pc <- do.call(cbind, lapply(bloci, function(test) {
return(test$predicted_coi)
}))
pb <- do.call(cbind, lapply(bloci, function(test) {
return(test$probability)
}))
pg <- do.call(rbind, lapply(bloci, function(test) {
return(test$param_grid)
}))
be <- do.call(rbind, lapply(bloci, function(test) {
return(test$boot_error)
}))
# Fix the naming for predicted_coi
num_cois <- length(unique(pg$coi))
num_repeat_cois <- length(pg$coi) / num_cois
names(pc) <- paste(
"coi",
pg$coi,
rep(seq(num_repeat_cois), each = num_cois),
sep = "_"
)
# Create the output
tloci_1 <- list(
predicted_coi = pc,
probability = pb,
param_grid = pg,
boot_error = be
)
# Plot
tloci_image_1 <- sensitivity_plot(
data = tloci_1,
result_type = "cont",
title = "Predicted COI",
dims = c(1, 3),
sub_title = paste0("Loci = ", c(1e2, 1e3, 1e4))
)
# Add a loci column
tloci_1$boot_error$loci <- rep(
c(1e2, 1e3, 1e4),
each = length(unique(tloci_1$boot_error$coi))
)
tloci_error_1 <- error_plot(
tloci_1,
fill = "loci",
legend_title = "Loci",
title = "Error"
)
tloci_fig_1 <- tloci_image_1 / tloci_error_1 +
plot_annotation(
tag_levels = "A",
theme = theme(plot.tag = element_text(size = 10))
) +
theme(legend.position = "bottom")
tloci_fig_1
# Set the range over which we will iterate
loci <- c(1e2, 1e3, 1e4)
# For each loci, reset the PLMAF and then run
bloci <- lapply(loci, function(new_L) {
new_p <- rbeta(new_L, 1, 5)
new_p[new_p > 0.5] <- 1 - new_p[new_p > 0.5]
inner_tloci <- cont_sensitivity(
coi = 2:20,
repetitions = 100,
plmaf = new_p,
seq_error = 0.01,
coi_method = "frequency"
)
inner_tloci$param_grid$loci <- new_L
return(inner_tloci)
})
# Extract the relevant information for each output: predicted_coi, probability,
# param_grid, and boot_error
pc <- do.call(cbind, lapply(bloci, function(test) {
return(test$predicted_coi)
}))
pb <- do.call(cbind, lapply(bloci, function(test) {
return(test$probability)
}))
pg <- do.call(rbind, lapply(bloci, function(test) {
return(test$param_grid)
}))
be <- do.call(rbind, lapply(bloci, function(test) {
return(test$boot_error)
}))
# Fix the naming for predicted_coi
num_cois <- length(unique(pg$coi))
num_repeat_cois <- length(pg$coi) / num_cois
names(pc) <- paste(
"coi",
pg$coi,
rep(seq(num_repeat_cois), each = num_cois),
sep = "_"
)
# Create the output
tloci_2 <- list(
predicted_coi = pc,
probability = pb,
param_grid = pg,
boot_error = be
)
# Plot
tloci_image_2 <- sensitivity_plot(
data = tloci_2,
result_type = "cont",
title = "Predicted COI",
dims = c(1, 3),
sub_title = paste0("Loci = ", c(1e2, 1e3, 1e4))
)
# Add a loci column
tloci_2$boot_error$loci <- rep(
c(1e2, 1e3, 1e4),
each = length(unique(tloci_2$boot_error$coi))
)
tloci_error_2 <- error_plot(
tloci_2,
fill = "loci",
legend_title = "Loci",
title = "Error"
)
tloci_fig_2 <- tloci_image_2 / tloci_error_2 +
plot_annotation(
tag_levels = "A",
theme = theme(plot.tag = element_text(size = 10))
) +
theme(legend.position = "bottom")
tloci_fig_2
talpha_1 <- cont_sensitivity(
coi = 2:20,
alpha = seq(0.01, 5.51, 0.5),
repetitions = 100,
seq_error = 0.01,
plmaf = p
)
talpha_image_1 <- sensitivity_plot(
data = talpha_1,
result_type = "cont",
title = "Predicted COI",
dims = c(4, 3),
sub_title = paste0("Alpha = ", seq(0.01, 5.51, 0.5))
)
talpha_error_1 <- error_plot(
talpha_1,
fill = "alpha",
legend_title = "Alpha",
title = "Error"
)
talpha_fig_1 <- talpha_image_1 / talpha_error_1 +
plot_annotation(
tag_levels = "A",
theme = theme(plot.tag = element_text(size = 10))
) +
plot_layout(heights = c(5, 1)) +
theme(legend.position = "bottom")
talpha_fig_1
talpha_2 <- cont_sensitivity(
coi = 2:20,
alpha = seq(0.01, 5.51, 0.5),
repetitions = 100,
seq_error = 0.01,
plmaf = p
)
talpha_image_2 <- sensitivity_plot(
data = talpha_2,
result_type = "cont",
title = "Predicted COI",
dims = c(4, 3),
sub_title = paste0("Alpha = ", seq(0.01, 5.51, 0.5))
)
talpha_error_2 <- error_plot(
talpha_2,
fill = "alpha",
legend_title = "Alpha",
title = "Error"
)
talpha_fig_2 <- talpha_image_2 / talpha_error_2 +
plot_annotation(
tag_levels = "A",
theme = theme(plot.tag = element_text(size = 10))
) +
plot_layout(heights = c(5, 1)) +
theme(legend.position = "bottom")
talpha_fig_2
tover <- cont_sensitivity(
coi = 2:20,
overdispersion = seq(0, 0.25, 0.05),
repetitions = 100,
seq_error = 0.01,
plmaf = p,
coi_method = c("variant", "frequency")
)
tover_image <- sensitivity_plot(
data = tover,
result_type = "cont",
title = "Predicted COI",
dims = c(4, 3),
sub_title = paste0(
rep(c("Var, ", "Freq, "), each = 6),
"Dispersion = ",
seq(0, 0.25, 0.05)
)
)
tover_error <- error_plot(
tover,
fill = "overdispersion",
legend_title = "Overdispersion",
title = "Error",
second_fill = "coi_method"
)
tover_fig <- tover_image / tover_error +
plot_annotation(
tag_levels = "A",
theme = theme(plot.tag = element_text(size = 10))
) +
plot_layout(heights = c(5, 1)) +
theme(legend.position = "bottom")
tover_fig
tepsilon <- cont_sensitivity(
coi = 2:20,
epsilon = seq(0, 0.025, 0.005),
repetitions = 100,
seq_error = 0.01,
plmaf = p,
coi_method = c("variant", "frequency")
)
tepsilon_image <- sensitivity_plot(
data = tepsilon,
result_type = "cont",
title = "Predicted COI",
dims = c(4, 3),
sub_title = paste0(
rep(c("Var, ", "Freq, "), each = 6),
"Epsilon = ",
seq(0, 0.025, 0.005)
)
)
tepsilon_error <- error_plot(
tepsilon,
fill = "epsilon",
legend_title = "Epsilon",
title = "Error",
second_fill = "coi_method"
)
tepsilon_fig <- tepsilon_image / tepsilon_error +
plot_annotation(
tag_levels = "A",
theme = theme(plot.tag = element_text(size = 10))
) +
plot_layout(heights = c(3, 1)) +
theme(legend.position = "bottom")
tepsilon_fig
tcoi <- cont_sensitivity(
coi = 2:40,
max_coi = 40,
repetitions = 100,
plmaf = p,
seq_error = 0.01,
coi_method = c("variant", "frequency")
)
tcoi_image <- sensitivity_plot(
data = tcoi,
dims = c(1, 2),
result_type = "cont",
title = "Predicted COI",
sub_title = c("Variant Method", "Frequency Method")
)
tcoi_error <- error_plot(
tcoi,
fill = "coi_method",
legend_title = "COI Method",
title = "Error",
fill_levels = c("Variant Method", "Frequency Method")
)
tcoi_fig <- tcoi_image / tcoi_error +
plot_annotation(
tag_levels = "A",
theme = theme(plot.tag = element_text(size = 10))
) +
theme(legend.position = "bottom")
tcoi_fig
tseq <- cont_sensitivity(
coi = 2:20,
epsilon = 0.01,
seq_error = seq(0, 0.10, 0.02),
repetitions = 100,
plmaf = p,
coi_method = c("variant", "frequency")
)
tseq_image <- sensitivity_plot(
data = tseq,
result_type = "cont",
title = "Predicted COI",
dims = c(4, 3),
sub_title = paste0(
rep(c("Variant, ", "Frequency, "), each = 6),
"Seq Error = ",
seq(0, 0.12, 0.02)
)
)
tseq_error <- error_plot(
tseq,
fill = "seq_error",
legend_title = "Sequence Error",
title = "Error"
)
tseq_fig <- tseq_image / tseq_error +
plot_annotation(
tag_levels = "A",
theme = theme(plot.tag = element_text(size = 10))
) +
plot_layout(heights = c(5, 1)) +
theme(legend.position = "bottom")
tseq_fig
tbin <- cont_sensitivity(
coi = 2:20,
use_bins = c(TRUE, FALSE),
plmaf = p,
repetitions = 100,
coi_method = c("variant", "frequency")
)
tbin_image <- sensitivity_plot(
data = tbin,
result_type = "cont",
title = "Predicted COI",
dims = c(2, 2),
sub_title = paste(
c("Variant Method,", "Frequency Method,"),
"Bins =",
rep(c(TRUE, FALSE), each = 2)
)
)
tbin_error <- error_plot(
tbin,
fill = "use_bins",
fill_levels = as.character(c(TRUE, FALSE)),
legend_title = "COI Method",
title = "Error",
second_fill = "coi_method"
)
tbin_fig <- tbin_image / tbin_error +
plot_annotation(
tag_levels = "A",
theme = theme(plot.tag = element_text(size = 10))
) +
plot_layout(heights = c(3, 1)) +
theme(legend.position = "bottom")
tbin_fig
tbin_size <- cont_sensitivity(
coi = 2:20,
use_bins = TRUE,
bin_size = seq(10, 100, 30),
plmaf = p,
repetitions = 100,
seq_error = 0.01,
coi_method = c("variant", "frequency")
)
tbin_size_image <- sensitivity_plot(
data = tbin_size,
result_type = "cont",
title = "Predicted COI",
dims = c(2, 4),
sub_title = rep(paste("Bin Size =", seq(10, 100, 30)), 2)
)
tbin_size_error <- error_plot(
tbin_size,
fill = "bin_size",
fill_levels = as.character(seq(10, 100, 30)),
legend_title = "COI Method",
title = "Error"
)
tbin_size_fig <- tbin_size_image / tbin_size_error +
plot_annotation(
tag_levels = "A",
theme = theme(plot.tag = element_text(size = 10))
) +
plot_layout(heights = c(3, 1)) +
theme(legend.position = "bottom")
tbin_size_fig