Package: PlasmoSim (via r-universe)

June 9, 2024

Type Package Title Simulation of Plasmodium genetic data Version 1.0.0 Description A basic Plasmodium simulator. Contains functions to simulate epidemiological and genetic data from a simple model of Plasmodium falciparum transmission. License MIT + file LICENSE **Encoding** UTF-8 LazyData true RoxygenNote 7.2.3 LinkingTo Rcpp Imports Rcpp, dplyr, openssl, rlang, knitrProgressBar SystemRequirements C++11 BugReports https://github.com/mrc-ide/PlasmoSim/issues **Suggests** knitr, rmarkdown, tidyverse, kableExtra, testthat (>= 3.0.0) Config/testthat/edition 3 VignetteBuilder knitr Repository https://plasmogenepi.r-universe.dev RemoteUrl https://github.com/mrc-ide/PlasmoSim RemoteRef HEAD RemoteSha 40ce6af570927f1e89759805a8d891678b05d85b

Contents

check_PlasmoSim_loaded	2
get_haplotype_identity	2
get_identity_matrix	3
get_spatial_distance	3
lonlat_to_bearing	4

PlasmoSim	 			•			•	•			•	•						 	4
plasmosim_file	 																	 	4
sim_falciparum	 			•				•				•		•		•		 	5
																			7

check_PlasmoSim_loaded

Check that PlasmoSim package has loaded successfully

Description

Simple function to check that PlasmoSim package has loaded successfully. Prints "PlasmoSim loaded successfully!" if so.

Usage

check_PlasmoSim_loaded()

get_haplotype_identity

Get proportion identical between two haplotype matrices

Description

Compare two sets of haplotypes (matrices), and return the proportion of identical sites over all pairwise comparisons. Values can be any numeric value; for example if values represent ancestry then this function returns the average identity by descent, or if values represent alleles then it returns the average identity by state.

Usage

```
get_haplotype_identity(mat1, mat2)
```

Arguments

mat1, mat2 matrices representing sets of haplotypes to compare. Haplotypes are in rows and loci are in columns.

Index

get_identity_matrix Get pairwise genetic identity matrix

Description

Calculates pairwise genetic identity between all samples. If deme_level = TRUE this is averaged over all individuals within a deme, to produce average pairwise relatedness within and between demes. Each time point in the sample is considered independently, and output as a list.

Usage

```
get_identity_matrix(sim_output, deme_level = FALSE)
```

Arguments

sim_output	<pre>simulation output from sim_falciparum().</pre>
deme_level	if TRUE then return pairwise identity at the deme level, averaged over all individ-
	uals within each deme. Otherwise return at the individual level.

get_spatial_distance Get great circle distance between spatial points

Description

Get great circle distance between spatial points.

Usage

```
get_spatial_distance(lat, lon)
```

Arguments

lat	vector of latitudes.
lon	vector of longitudes.

lonlat_to_bearing Calculate great circle distance and bearing between coordinates

Description

Calculate great circle distance and bearing between spatial coordinates.

Usage

```
lonlat_to_bearing(origin_lon, origin_lat, dest_lon, dest_lat)
```

Arguments

origin_lon	The origin longitude
origin_lat	The origin latitude
dest_lon	The destination longitude
dest_lat	The destination latitude

Examples

one degree longitude should equal approximately 111km at the equator lonlat_to_bearing(0, 0, 1, 0)

	PlasmoSim	PlasmoSim
--	-----------	-----------

Description

A basic Plasmodium simulator. Contains functions to simulate epidemiological and genetic data from a simple model of Plasmodium falciparum transmission.

plasmosim_file Import file

Description

Import file from the inst/extdata folder of this package

Usage

plasmosim_file(name)

Arguments

name name of file.

sim_falciparum

Description

Simulate genetic data from a simple model of P. falciparum epidemiology and genetics.

Usage

```
sim_falciparum(
 a = 0.3,
 p = 0.9,
 mu = -log(p),
 u = 12,
 v = 10,
 g = 10,
 prob_infection = 0.1,
 duration_infection = dgeom(1:500, 1/100),
  infectivity = 0.1,
 max_infections = 5,
 H = 1000,
  seed_infections = 100,
 M = 1000,
 mig_matrix = diag(length(M)),
 L = 24,
 mean_oocysts = 2,
 mean_products = 5,
 recomb_prob = 0.1,
 max_time = max(sample_dataframe$time),
 sample_dataframe = data.frame(deme = 1, time = 365, n = 100),
  report_progress = TRUE
)
```

Arguments

а	human blood feeding rate. The proportion of mosquitoes that feed on humans each day.
р	mosquito probability of surviving one day.
mu	mosquito instantaneous death rate. $mu = -log(p)$ unless otherwise specified.
u	intrinsic incubation period. The number of days from infection to blood-stage infection in a human host.
V	extrinsic incubation period. The number of days from infection to becoming infectious in a mosquito.
g	lag time between human blood-stage infection and production of gametocytes.
prob_infection	probability a human becomes infected after being bitten by an infected mosquito.

duration_infect	ion								
	vector specifying probability distribution of time (in days) of a malaria episode.								
infectivity	probability a mosquito becomes infected after biting an infective human host.								
<pre>max_infections</pre>	maximum number of infections that an individual can hold simultaneously.								
Н	human population size, which is assumed to be the same in every deme.								
seed_infections									
	vector specifying the initial number of infected humans in each deme.								
М	vector specifying mosquito population size (strictly the number of adult female mosquitoes) in each deme.								
mig_matrix	migration matrix specifing the daily probability of migrating from each deme to each other deme. Migration must be equal in both directions, meaning this matrix must be symmetric.								
L	number of loci. The maximum number of loci is 1000, as at higher numbers haplotypes begin to exceed integer representation (2 ^L).								
mean_oocysts	the average number of viable oocysts generated from gametocytes upon biting an infective host. The actual number of oocysts is generated from a zero-truncated Poisson distribution with this mean.								
mean_products	parasite genotypes are passed from mosquito to host by sampling N times with replacement from the available oocysts products (the available number of prod- ucts is 4 times the number of oocysts). N is drawn independently for each infec- tion from a zero-truncated Poisson distribution with mean given by mean_products. Hence, large values of this parameter increase the chance of co-transmission of multiple genotypes, while small values increase the chance of picking up just a single genotype.								
recomb_prob	the probability of a recombination breakpoint between any sequential pair of loci. Assumed to be the same for all loci.								
<pre>max_time</pre>	number of days in the simulation.								
sample_datafram	ie								
	a dataframe specifying outputs from the model. Must contain the following three columns:								
	1. deme: which numbered deme to sample from.								
	2. time: the day on which samples are taken.								
	3. n: the number of hosts to randomly sample (without replacement) from the population.								
report_progress									

if TRUE then a progress bar is printed to the console during simuation.

6

Index

 ${\tt check_PlasmoSim_loaded, 2}$

get_haplotype_identity, 2
get_identity_matrix, 3
get_spatial_distance, 3

lonlat_to_bearing, 4

PlasmoSim, 4
plasmosim_file, 4

sim_falciparum, 5