Package: MALECOT (via r-universe)

June 3, 2024

Type Package

Title Joint estimation of COI and population structure for malaria genetic data

Version 0.1.1

Maintainer Bob Verity < r. verity@imperial.ac.uk>

Description Carries out joint estimation of complexity of infection (COI) and population structure on malaria genetic data. Assumes a simple model in which individuals have genotypes sampled from one or more subpopulations, and the number of genotypes in an individual is equal to the COI, which is also unknown. All unknown parameters are inferred using MCMC.

License MIT + file LICENSE

BugReports https://github.com/bobverity/malecot/issues

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

LinkingTo Rcpp

Imports Rcpp (>= 0.12.14), parallel, coda, ggplot2, gridExtra, RColorBrewer

SystemRequirements C++11

Suggests testthat, covr, knitr, rmarkdown, tidyr, plotly, gridExtra

VignetteBuilder knitr

Repository https://plasmogenepi.r-universe.dev

RemoteUrl https://github.com/bobverity/MALECOT

RemoteRef HEAD

RemoteSha 713d220d14f282dc63618ca10c83e2a902a83266

2 Contents

Contents

Index

active_set
bind_data_biallelic
bind_data_multiallelic
check_MALECOT_loaded
delete_set
get_ESS
get_group_order(
is.malecot_project
MALECOT
malecot_file
malecot_project
more_colours
new_set
plot_acf
plot_COI
plot_COI_mean
plot_coupling
plot_density
plot_e
plot_GTI_path
plot_logevidence_K
plot_logevidence_model
plot_loglike
plot_loglike_dignostic
plot_p
plot_posterior_K
plot_posterior_model
plot_prior_COI
plot_prior_p
plot_structure
plot_trace
print.malecot_project
print_full 20
recalculate_evidence
run_mcmc
sim_data
sim_data_safe
summary.malecot_project

25

active_set 3

active_set

Change the active set of a MALECOT project

Description

Change the active set of a MALECOT project

Usage

```
active_set(project, set)
```

Arguments

project a MALECOT project, as produced by the function malecot_project()

set the new active set

Examples

TODO

bind_data_biallelic

Bind bi-allelic data to project

Description

Bind data in bi-allelic format to MALECOT project. Data should be formatted as a dataframe with samples in rows and loci in columns. Genetic data should be coded as 1 (homozygote REF allele), 0 (homozygote ALT allele), or 0.5 (heterozygote). Additional meta-data columns can be specified, including a column for sample IDs and a column for sampling population.

Usage

```
bind_data_biallelic(project, df, ID_col = 1, pop_col = NULL,
  data_cols = NULL, ID = NULL, pop = NULL, missing_data = -9,
  name = NULL, check_delete_output = TRUE)
```

Arguments

project	a MALECOT project, as produced by the function malecot_project()
df	a dataframe containing genetic information and optional meta-data
ID_col	which column of the input data contains the sample IDs. If NULL then IDs must be defined seperately through the ID argument
pop_col	which column of the input data contains the ostensible population of the samples. If NULL then populations must be defined seperately through the popurgument

data_cols which columns of the input data contain genetic information. Defaults to all

remaining columns of the data once meta-data columns have been accounted for

ID sample IDs. Ignored if using the ID_col option

pop ostensible populations. Ignored if using the pop_col option

missing_data what value represents missing data. Defaults to -9. Must be a positive or nega-

tive integer, and cannot equal 0 or 1 as these are reserved for genetic data.

name optional name of the data set to aid in record keeping

check_delete_output

whether to prompt the user before overwriting existing data

Examples

TODO

bind_data_multiallelic

Bind multi-allelic format data to project

Description

Bind data in multi-allelic format to MALECOT project. Data should be formatted as a dataframe with three columns: "sample_ID", "locus" and "haplotype". Each row of this dataframe specifies a haplotype that was observed at that locus in that individual. Haplotypes should be coded as positive integers.

Usage

```
bind_data_multiallelic(project, df, pop = NULL, missing_data = -9,
   alleles = NULL, name = NULL, check_delete_output = TRUE)
```

Arguments

project a MALECOT project, as produced by the function malecot_project()

df a dataframe with three columns, as decribed above

pop ostensible populations of the samples

missing_data what value represents missing data. Defaults to -9. Must be a positive or nega-

tive integer

alleles the number of alleles at each locus. If scalar then the same number of alleles is

assumed at all loci. If NULL then the number of alleles is inferred directly from

data as the maximum observed value per locus

name optional name of the data set to aid in record keeping

check_delete_output

whether to prompt the user before overwriting existing data

Examples

Description

Simple function to check that MALECOT package has loaded successfully. Prints "MALECOT loaded successfully!" if so.

Usage

```
check_MALECOT_loaded()
```

delete_set

Delete parameter set

Description

Delete a given parameter set from a MALECOT project.

Usage

```
delete_set(project, set = NULL, check_delete_output = TRUE)
```

Arguments

project a MALECOT project, as produced by the function malecot_project()

set which set to delete. Defaults to the current active set

check_delete_output

whether to prompt the user before deleting any existing output

Examples

6 get_group_order

get_ESS

Get ESS

Description

Returns effective sample size (ESS) of chosen model run.

Usage

```
get_ESS(project, K = NULL)
```

Arguments

project

a MALCOT project, as produced by the function malecot_project()

K

get ESS for this value of K

Examples

TODO

get_group_order

Match grouping against q-matrix

Description

Compares quatrix output for a chosen value of K against a target_group vector. Returns the order of target_group groups, such that there is the best possible alignment against the quatrix. For example, if the vector returned is c(2,3,1) then the second group in the target vector should be matched against the first group in the quatrix, followed by the third group in the target vector against the second group in the quatrix, followed by the first group in the target vector against the third group in the quatrix.

Usage

```
get_group_order(project, K, target_group)
```

Arguments

project a MALCOT project, as produced by the function malecot_project()

K compare against qmatrix output for this value of K target_group the target group to be aligned against the qmatrix

Examples

is.malecot_project 7

is.malecot_project

Determine if object is of class malecot_project

Description

Determine if object is of class malecot_project.

Usage

```
is.malecot_project(x)
```

Arguments

Х

TODO

Details

TODO

Examples

TODO

MALECOT

MALECOT package

Description

MALECOT package

 ${\tt malecot_file}$

Import file

Description

Import file from the inst/extdata folder of this package

Usage

```
malecot_file(name)
```

Arguments

name

name of file

8 more_colours

malecot_project

Define empty malecot_project object

Description

Define empty malecot_project object

Usage

```
malecot_project()
```

Details

TODO

Examples

TODO

more_colours

Expand series of colours by interpolation

Description

Expand a series of colours by interpolation to produce any number of colours from a given series. The pattern of interpolation is designed so that (n+1)th value contains the nth value plus one more colour, rather than being a completely different series. For example, running more_colours(5) and more_colours(4), the first 4 colours will be shared between the two series.

Usage

```
more_colours(n = 5, raw_cols = col_hot_cold())
```

Arguments

how many colours to return

raw_cols vector of colours to interpolate

9 new_set

new_set

Create new MALECOT parameter set

Description

TODO

Usage

```
new_set(project, name = "(no name)", lambda = 1,
 COI_model = "poisson", COI_max = 20, COI_manual = NULL,
  estimate_COI_mean = TRUE, COI_mean = 3, COI_dispersion = 2,
 estimate_error = FALSE, e1 = 0, e2 = 0, e1_max = 0.2,
  e2_{max} = 0.2
```

Arguments

project a MALECOT project, as produced by the function malecot_project()

name the name of the parameter set

lambda the shape parameter(s) of the prior on allele frequencies. This prior is Beta in the bi-allelic case, and Dirichlet in the multi-allelic case. lambda can be:

- a single scalar value, in which case the same value is used for every allele and every locus (i.e. the prior is symmetric)
- a vector of values, in which case the same vector is used for every locus. Only works if the same number of alleles applies at every locus
- a list of vectors specifying the shape parameter separately for each allele of each locus. The list must of length L, and must contain vectors of length equal to the number of alleles at that locus

COI_model the type of prior on COI. Must be one of "uniform", "poisson", or "nb" (negative

binomial)

COI_max the maximum COI allowed for any given sample

A vector of length n (where n is the number of samples) allowing the COI to COI_manual

be specified manually. Positive values indicate fixed COIs that should not be updated as part of the MCMC, while -1 values indicate that COIs should be estimated. Defaults to rep(-1,n), meaning all COIs will be esimated

estimate_COI_mean

whether the mean COI should be estimated for each subpopulation as part of the MCMC, otherwise the value COI_mean is used for all subpopulations. Defaults to TRUE. Note that mean COI estimation is only possible under the Poisson and

negative binomial models (see COI_model)

COI_mean single scalar value specifying the mean COI for all subpopulations (see estimate_COI_mean

above)

COI_dispersion the ratio of the variance to the mean of the prior on COI. Only applies under the

negative binomial model. Must be >1, as a ratio of 1 can be achieved by using the Poisson distribution

plot_acf

estimate_error	whether to estimate error probabilities e1 and e2
e1	the probability of a true homozygote being incorrectly called as a heterozygote
e2	the probability of a true heterozygote being incorrectly called as a homozygote
e1_max	the maximum possible value of e1
e2_max	the maximum possible value of e2

Details

TODO

Examples

TODO

plot_acf	Produce MCMC autocorrelation plot
----------	-----------------------------------

Description

Produce MCMC autocorrelation plot of the log-likelihood

Usage

```
plot_acf(project, K = NULL, rung = NULL, col = "black")
```

Arguments

project	a MALECOT project,	as produced by	the function ma	lecot project()

K which value of K to plot

rung which rung to plot. Defaults to the cold chain

col colour of the trace

plot_COI

plot_COI

Plot COI 95% credible intervals

Description

Plot COI 95% credible intervals of current active set

Usage

```
plot_COI(project, K = NULL)
```

Arguments

project a MALECOT project, as produced by the function malecot_project()

K which value of K to plot

Details

TODO

Examples

TODO

plot_COI_mean

Plot COI_mean 95% credible intervals

Description

Plot COI_mean 95% credible intervals of current active set

Usage

```
plot_COI_mean(project, K = NULL, deme_order = NULL)
```

Arguments

project a MALECOT project, as produced by the function malecot_project()

K which value of K to plot

deme_order the order in which to plot demes. Defaults to increasing order

Details

TODO

Examples

plot_density

plot_coupling

Plot Metropolis-coupling acceptance rates

Description

Plot Metropolis-coupling acceptance rates

Usage

```
plot_coupling(project, K = NULL)
```

Arguments

project a MALECOT project, as produced by the function malecot_project()

K which value of K to plot

plot_density

Produce MCMC density plot

Description

Produce MCMC density plot of the log-likelihood

Usage

```
plot_density(project, K = NULL, rung = NULL, col = "black")
```

Arguments

project a MALECOT project, as produced by the function malecot_project()

K which value of K to plot

rung which rung to plot. Defaults to the cold chain

col colour of the trace

plot_e

plot_e

Plot error rate 95% credible intervals

Description

Plot error rate 95% credible intervals of current active set

Usage

```
plot_e(project, K = NULL)
```

Arguments

project a MALECOT project, as produced by the function malecot_project()

K which value of K to plot

Details

TODO

Examples

TODO

plot_GTI_path

Plot GTI path of current active set

Description

Plot GTI path of current active set

Usage

```
plot_GTI_path(project, K = NULL, axis_type = 1)
```

Arguments

project a MALECOT project, as produced by the function malecot_project()

K which value of K to plot

axis_type how to format the x-axis. 1 = integer rungs, 2 = values of beta

14 plot_loglike

plot_logevidence_K

Plot log-evidence estimates over K

Description

Plot log-evidence estimates over K

Usage

```
plot_logevidence_K(project)
```

Arguments

project

a MALECOT project, as produced by the function malecot_project()

```
plot_logevidence_model
```

Plot log-evidence estimates over parameter sets

Description

Plot log-evidence estimates over parameter sets

Usage

```
plot_logevidence_model(project)
```

Arguments

project

a MALECOT project, as produced by the function malecot_project()

plot_loglike

Plot loglikelihood 95% credible intervals

Description

Plot loglikelihood 95% credible intervals of current active set

Usage

```
plot_loglike(project, K = NULL, axis_type = 1,
    connect_points = FALSE, connect_whiskers = FALSE)
```

plot_loglike_dignostic 15

Arguments

project a MALECOT project, as produced by the function malecot_project()

K which value of K to plot

axis_type how to format the x-axis. 1 = integer rungs, 2 = values of beta, 3 = values of

beta raised to the GTI power

connect_points whether to connect points in the middle of intervals

connect_whiskers

whether to connect points at the ends of the whiskers

plot_loglike_dignostic

Produce diagnostic plots of log-likelihood

Description

Produce diagnostic plots of the log-likelihood.

Usage

```
plot_loglike_dignostic(project, K = NULL, rung = NULL, col = "black")
```

Arguments

project a MALECOT project, as produced by the function malecot_project()

K which value of K to plot

rung which rung to plot. Defaults to the cold chain

col colour of the trace

plot_p Plot allele frequency 95% credible intervals

Description

Plot allele frequency 95% credible intervals of current active set

Usage

```
plot_p(project, K = NULL, deme = 1)
```

Arguments

project a MALECOT project, as produced by the function malecot_project()

K which value of K to plot

deme TODO

plot_posterior_model

Details

TODO

Examples

TODO

plot_posterior_K

Plot posterior K

Description

Plot posterior K

Usage

```
plot_posterior_K(project)
```

Arguments

project

a MALECOT project, as produced by the function malecot_project()

```
\verb"plot_posterior_model" Plot posterior model"
```

Description

Plot posterior model

Usage

```
plot_posterior_model(project)
```

Arguments

project

a MALECOT project, as produced by the function malecot_project()

plot_prior_COI 17

nlot	prior	COT	
DIO1-	DI TOI -	_CO1	

Plot prior on COI

Description

Produce plot of the prior on COI for given parameters. Options include the uniform distribution, and a modified form of Poisson and negative binomial distribution (see details).

Usage

```
plot_prior_COI(COI_model = "poisson", COI_mean = 3,
   COI_dispersion = 2, COI_max = 20)
```

Arguments

COI_model	the type of prior on COI. Must be one of "uniform", "poisson", or "nb" (negative binomial) $$
COI_mean	the prior mean (before truncating at COI_max). Note that this parameter only applies under the "poisson" and "nb" models
COI_dispersion	the ratio of the variance to the mean of the prior on COI. Only applies under the negative binomial model. Must be >1
COI_max	the maximum COI allowed. Distributions are truncated at this value

Details

The prior on COI can be uniform, Poisson, or negative binomial. In the uniform case there is an equal chance of any given sample having a COI between 1 and COI_max (inclusive). In the Poisson and negative binomial cases it is important to note that the distribution is over (COI-1), rather than over COI. This is because both Poisson and negative binomial distributions allow for 0 values, which cannot be the case here because observed samples must contain at least 1 genotype. Poisson and negative binomial distributions are also truncated at COI_max.

The full probability mass distribution for the Poisson case with COI_mean= μ and COI_max= M can be written

$$Pr(COI = n) = z(\mu - 1)^{(n-1)}exp(-(\mu - 1))/(n-1)!$$

where z is a normalising constant that ensures the distribution sums to unity, and is defined as:

$$1/z = \sum_{i=1}^{M} (\mu - 1)^{(i-1)} exp(-(\mu - 1))/(i-1)!$$

The mean of this distribution will generally be very close to μ , and the variance will be close to $\mu - 1$ (strictly it will approach these values as M tends to infinity).

The full probability mass distribution for the negative binomial case with COI_mean= μ , COI_dispersion= v/μ and COI_max= M can be written

$$Pr(COI = n) = z\Gamma(n - 1 + N)/(\Gamma(N)(n - 1)!)p^{N}(1 - p)^{(n - 1)}$$

plot_structure

where $N = (\mu - 1)^2/(v - \mu + 1)$, $p = (\mu - 1)/v$, and z is a normalising constant that ensures the distribution sums to unity, and is defined as:

$$1/z = \sum_{i=1}^{M} \Gamma(i-1+N)/(\Gamma(N)(i-1)!)p^{N}(1-p)^{(i-1)}$$

The mean of this distribution will generally be very close to μ and the variance will be close to v (strictly it will approach these values as M tends to infinity).

plot_prior_p

Plot prior on allele frequencies

Description

Produce plot of the prior on COI for given parameters. This prior is Beta in the bi-allelic case, and Dirichlet in the multi-allelic case.

Usage

```
plot_prior_p(lambda = 1, alleles = NULL)
```

Arguments

lambda shape parameter(s) of the Beta or Dirichlet distribution. Can be a single scalar

value, in which case the dimensionality is given by the number of alleles, or a

vector of values specifying the shape parameter for each allele

alleles the dimensionality of the prior. Defaults to the length of lambda, or to 2 of

lambda is a scalar

plot_structure

Posterior allocation plot

Description

Produce posterior allocation plot of current active set.

Usage

```
plot_structure(project, K = NULL, base_colours = col_hot_cold(),
    divide_ind_on = FALSE)
```

Arguments

project a MALECOT project, as produced by the function malecot_project()

K which value of K to plot

base_colours colours from which final plotting colours are taken. These will be interpolated

to produce final colours

divide_ind_on whether to add dividing lines between bars

plot_trace 19

n	1م	+	+ 1	ra	ce
ν	$_{\tau}$	-	_ し	u	-

Produce MCMC trace plot

Description

Produce MCMC trace plot of the log-likelihood at each iteration.

Usage

```
plot_trace(project, K = NULL, rung = NULL, col = "black")
```

Arguments

```
project a MALECOT project, as produced by the function malecot_project()
```

K which value of K to plot

rung which rung to plot. Defaults to the cold chain

col colour of the trace

Description

Custom print function for class malecot_project, printing a summary of the key elements (also equivalent to summary(x)). To do an ordinary print() of all elements of the project, use the print_full() function.

Usage

```
## S3 method for class 'malecot_project'
print(x, ...)
```

Arguments

```
x object of class malecot_project
```

... other arguments (ignored)

20 recalculate_evidence

print_full

Ordinary print function for class malecot_project

Description

Calling print() on an object of class malecot_project results in custom output. This function therefore stands in for the base print() function, and is equivalent to running print(unclass(x)).

Usage

```
print_full(x, ...)
```

Arguments

x object of class malecot_project

... other arguments passed to print()

Description

When a new value of K is added in to the analysis it affects all downstream evidence estimates that depend on this K - for example the overall model evidence integrated over K. This function therefore looks through all values of K in the active set and recalculates all downstream elements as needed.

Usage

```
recalculate_evidence(project)
```

Arguments

project a MALCOT project, as produced by the function malecot_project()

run_mcmc 21

ın main MCMC

Description

Run the main MALECOT MCMC. Model parameters are taken from the current active parameter set, and MCMC parameters are passed in as arguments. All output is stored within the project.

Usage

```
run_mcmc(project, K = NULL, precision = 0.01, burnin = 1000,
  samples = 1000, rungs = 1, GTI_pow = 3, auto_converge = TRUE,
  converge_test = 100, solve_label_switching_on = TRUE,
  coupling_on = TRUE, cluster = NULL, pb_markdown = FALSE,
  store_acceptance = TRUE, store_raw = TRUE, silent = FALSE)
```

Arguments

project	a MALECOT project, as produced by the function malecot_project()	
K	the values of K that the MCMC will explore	
precision	the level of precision at which allele frequencies are represented in the bi-allelic case. This allows the use of look-up tables for the likelihood, which significantly speeds up the MCMC. Set to 0 to use exact values (up to C++ "double" precision) rather than using look-up tables	
burnin	the number of burn-in iterations	
samples	the number of sampling iterations	
rungs	the number of temperature rungs	
GTI_pow	the power used in the generalised thermodynamic integration method. Must be greater than 1.1	
auto_converge	whether convergence should be assessed automatically every converge_test iterations, leading to termination of the burn-in phase. If FALSE then the full burnin iterations are used	
converge_test	test for convergence every convergence_test iterations if auto_converge is being used	
solve_label_switching_on		
	whether to implement the Stevens' solution to the label-switching problem. If turned off then Q-matrix output will no longer be correct, although evidence estimates will be unaffected.	
coupling_on	whether to implement Metropolis-coupling over temperature rungs	
cluster	option to pass in a cluster environment (see package "parallel")	
pb_markdown	whether to run progress bars in markdown mode, in which case they are updated once at the end to avoid large amounts of output	

22 sim_data

store_acceptance

whether to store acceptance rates for all parameters updated by Metropolis-Hastings. Proposal distributions are tuned adaptively with a target acceptance

rate of 23%

store_raw whether to store raw MCMC output in addition to summary output. Setting to

FALSE can considerably reduce output size in memory

silent whether to suppress all console output

Examples

TODO

sim_data

Simulate genetic data

Description

Simulate genetic data from the same model used in the MALECOT inference step.

Usage

```
sim_data(n = 100, L = 24, K = 3, data_format = "biallelic",
pop_col_on = TRUE, alleles = 2, lambda = 1,
COI_model = "poisson", COI_max = 20, COI_manual = rep(-1, n),
COI_mean = 3, COI_dispersion = 2, e1 = 0, e2 = 0,
prop_missing = 0)
```

Arguments

n the number of samples

L the number of loci per sample K the number of subpopulations

data_format whether to produce data in "biallelic" or "multiallelic" format. Note that if bial-

lelic format is chosen then alleles is always set to 2

pop_col_on TODO

alleles the number of alleles at each locus. Can be a vector of length L specifying the

number of alleles at each locus, or a single scalar value specifying the number

of alleles at all loci

lambda the shape parameter(s) of the prior on allele frequencies. This prior is Beta in

the bi-allelic case, and Dirichlet in the multi-allelic case. lambda can be:

- a single scalar value, in which case the same value is used for every allele and every locus (i.e. the prior is symmetric)
- a vector of values, in which case the same vector is used for every locus. Only works if the same number of alleles applies at every locus

sim_data_safe 23

	• a list of vectors specifying the shape parameter separately for each allele of each locus. The list must of length L, and must contain vectors of length equal to the number of alleles at that locus
COI_model	the distribution from which COIs are drawn. Options include a uniform distribution ("uniform"), a Poisson distribution ("poisson"), or a negative binomial distribution ("nb")
COI_max	the maximum allowed COI. Any COIs that are initially drawn larger than this value are set down to this value
COI_manual	option to override the MCMC and set the COI of one or more samples manually, in which case they are not updated. Vector of length n specifing the integer valued COI of each sample, with -1 indicating that a sample should be estimated
COI_mean	the mean of the distribution from which COIs are drawn. Only applies under the Poisson and negative binomial models (under the uniform model the mean is (COI_max+1)/2 by definition)
COI_dispersion	Only used under the negative binomial model. Defines how much larger the variance is than the mean. Must be > 1
e1	the probability of a true homozygote being incorrectly called as a heterozygote
e2	the probability of a true heterozygote being incorrectly called as a homozygote
prop_missing	the proportion of the data that is missing. Note that data are masked out at random, meaning in some rare cases (and when the proportion of missing data is large) an entire sample or locus can end up being masked out, which will throw an error when loaded into a project

Details

TODO

Examples

TODO

 sim_data_safe

Simulate genetic data subject to constraints

Description

TODO - text

Usage

```
sim_data_safe(..., data_format = "biallelic", no_invariant_loci = TRUE,
no_missing_samples = TRUE, no_missing_loci = TRUE,
max_attempts = 1000)
```

Arguments

Details

TODO

Examples

TODO

```
summary.malecot_project
```

Print summary for class malecot_project

Description

Overload summary function for class malecot_project

Usage

```
## S3 method for class 'malecot_project'
summary(object, ...)
```

Arguments

```
object object of class malecot_project
... other arguments (ignored)
```

Index

```
active_set, 3
                                                print_full, 20
bind_data_biallelic, 3
                                                recalculate_evidence, 20
bind_data_multiallelic, 4
                                                run_mcmc, 21
                                                sim_data, 22
check_MALECOT_loaded, 5
                                                sim_data_safe, 23
delete_set, 5
                                                summary.malecot_project, 24
get_ESS, 6
get_group_order, 6
is.malecot_project, 7
MALECOT, 7
MALECOT-package (MALECOT), 7
malecot_file, 7
malecot_project, 8
more_colours, 8
new_set, 9
plot_acf, 10
plot_COI, 11
plot_COI_mean, 11
plot_coupling, 12
plot_density, 12
plot_e, 13
plot_GTI_path, 13
plot_logevidence_K, 14
plot_logevidence_model, 14
plot_loglike, 14
plot_loglike_dignostic, 15
plot_p, 15
plot_posterior_K, 16
\verb|plot_posterior_model|, 16
plot_prior_COI, 17
plot_prior_p, 18
plot_structure, 18
plot_trace, 19
print.malecot_project, 19
```